Mean-Flow Measurements in the Boundary Layer and Wake and Wave Field of a Series 60 CB = 0.6 Ship Model—Part 2: Scale Effects on Near-Field Wave Patterns and Comparisons with Inviscid Theory

Author:

Longo J.1,Stern F.1,Toda Y.1

Affiliation:

1. The University of Iowa

Abstract

Part 2 of this two-part paper presents additional results from a towing-tank experiment conducted in order to explicate the influence of wavemaking by a surface-piercing body on its boundary-layer and wake and provide detailed documentation of the complete flow field appropriate for validating computational methods. In Part 1 (Journal of Ship Research, Dec. 1992), wave profile, local and global wave-elevation, and mean-velocity and pressure field measurements for Froude numbers 0.16 and 0.316 for a 3.048 m Series 60 CB = 0.6 hull form are presented and discussed to point out the essential differences between the flows at low and high Froude number and to assess the nature of the interaction between wavemaking and the boundary layer and wake. In Part 2, scale effects on the near-field wave patterns are examined through wave profile and local and global wave-elevation measurements for 1.829 and 3.048 m models and Froude numbers 0.316, 0.3, and 0.25. The bow-wave amplitude and divergence angle are larger and the stern waves smaller for the smaller model. The latter scale effect is well known, but the former one is a new and unexpected result. Also, comparisons are made between the experimental results and those from a wavy inviscid-flow method, which provides an evaluation of the capabilities of the computational method. Although the computations predict the gross features of the wave system and velocity and pressure fields, they do not simulate the complex details of either the wave system or the flow field, especially close to the hull and wake centerplane.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3