Reduction of Hull-Radiated Noise Using Vibroacoustic Optimization of the Propulsion System

Author:

Caresta Mauro1,Kessissoglou Nicole J.1

Affiliation:

1. The University of New South Wales

Abstract

Vibration modes of a submarine are excited by fluctuating forces generated at the propeller and transmitted to the hull via the propeller-shafting system. The low frequency vibrational modes of the hull can result in significant sound radiation. This work investigates reduction of the far-field radiated sound pressure from a submarine using a resonance changer implemented in the propulsion system as well as design modifications to the propeller-shafting system attachment to the hull. The submarine hull is modeled as a fluid-loaded ring-stiffened cylindrical shell with truncated conical end caps. The propeller-shafting system is modeled in a modular approach using a combination of mass-spring-damper elements, beams, and shells. The stern end plate of the hull, to which the foundation of the propeller-shafting system is attached, is modeled as a circular plate coupled to an annular plate. The connection radius of the foundation to the stern end plate is shown to have a great influence on the structural and acoustic responses and is optimized in a given frequency range to reduce the radiated noise. Optimum connection radii for a range of cost functions based on the maximum radiated sound pressure are obtained for both simple support and clamped attachments of the foundation to the hull stern end plate. A hydraulic vibration attenuation device known as a resonance changer is implemented in the dynamic model of the propeller-shafting system. A combined genetic and pattern search algorithm was used to find the optimum virtual mass, stiffness, and damping parameters of the resonance changer. The use of a resonance changer in conjunction with an optimized connection radius is shown to give a significant reduction in the low frequency structure-borne radiated sound.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3