Ship Drag Reduction by Air Bottom Ventilated Cavitation in Calm Water and in Waves

Author:

Amromin Eduard1,Karafiath Gabor2,Metcalf Bryson2

Affiliation:

1. Mechmath LLC

2. NSWCCD

Abstract

The goal herein is ship drag reduction by air bottom cavitation in the moderate range of Froude number Fr (0.4 < Fr < 0.65) in both calm water and in waves. A ship hull with a bottom niche terminating in a cavity locker/seal (suppressing cavity tail oscillations and reducing the air escape from the cavity) was designed using nonlinear ideal fluid theory. The wave impact on the cavity shape and drag reduction was estimated with a novel analytical approach that takes into account the air compressibility in the cavity and air entrainment by the water. The model drag was measured in the Naval Surface Warfare Center linear tow tank at different drafts in calm water and in waves. The baseline configuration was with the niche closed by a flat cover. The attained total drag reduction at 0.45 < Fr < 0.63 was up to 25%, whereas the air supply power was under 4% of the gain in the required propulsion power. The air cavity was stable in waves (up to sea state 5 for a 90 meter ship) and the effectiveness of drag reduction by cavitation in seaway was greater than in calm water due to smaller wave-induced additional drag of the ship with air bottom cavity. Two identical models were built and tested also as a seatrain. However, the percentage drag reduction due to cavity ventilation in the seatrain configuration was less than for a single hull. The need for fine tuning the air supply distribution between the hulls was found.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3