Effect of Memory on the Stability of Spread Mooring Systems

Author:

Kim Boo-Ki1,Bernitsas Michael M.1

Affiliation:

1. The University of Michigan

Abstract

The importance of including the hydrodynamic memory effect in modeling and analysis of spread mooring systems (SMS) is assessed based on the design methodology for mooring systems developed at the University of Michigan. The memory effect is modeled by the hydrodynamic radiation forces expressed in terms of added mass at infinite frequency and convolution integrals of impulse response functions. The convolution integrals, which are explicit functions of time, are converted to autonomous excitation by the method of extended dynamics. For a given SMS configuration, nonlinear stability and bifurcation theory are used to produce catastrophe sets in the parametric design space separating regions of qualitatively different system dynamics. This approach reveals the complete picture of nonlinear phenomena associated with system dynamics and eliminates the need for extensive simulations. Catastrophe sets are developed in several parametric design spaces, providing fundamental understanding of the memory effects on SMS nonlinear dynamics. The mathematical model is based on the slow-motion maneuvering equations in the horizontal plane, including hydrodynamic memory effect and third-order quasi-steady hydrodynamic forces. Mooring lines are modeled by synthetic fiber ropes attached to surface terminals and deep-water catenary chains with touchdown and nonlinear drag. Environmental loads consist of time-independent current, wind, and mean wave drift forces.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3