Numerical Simulation of Green Water on Deck with a Hybrid Eulerian-Lagrangian Method

Author:

Liao Kangping1,Duan Wenyang1,Ma Qingwei2,Ma Shan1,Yang Jianming3

Affiliation:

1. Harbin Engineering University

2. City University London

3. Fidesi Solutions LLC

Abstract

Green water on the ship deck in rough sea conditions may induce extreme impulsive wave impacts on superstructures and result in severe structural damage. It is of great importance to consider green water loads in ship structure design. However, there are many challenges in predicting green water loads due to the strongly nonlinear wave-ship interactions and the multiphase, multi-scale nature of the wave impact phenomena. In this article, a three-dimensional hybrid Eulerian-Lagrangian approach is proposed for simulating green water loads on the ship deck. It is extended from an efficient and accurate two-dimensional method developed for fluid-structure interaction problems. In this method, the flow field is solved on a fixed regular Cartesian grid system in an Eulerian framework, whereas the solid body motion is tracked with a set of markers immersed in the fluid and solved in a Lagrangian framework. Two benchmark cases, green water on a fixed simplified Floating Production Storage and Offloading (FPSO) model and green water on ship, are simulated. Comparison between experimental data and numerical results shows that our method is a viable choice for predicting green water loads.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3