Effect of drying technology on aspen wood properties

Author:

Heräjärvi Henrik

Abstract

This article reports the impacts of three different drying treatments on selected physical and mechanical properties of European (Populus tremula L.) and hybrid (P. tremula x tremuloides) aspen wood. The material originates from 5 European aspen stands and 7 hybrid aspen stands in southern and central Finland. After processing the logs at a saw mill, sawn timber samples were dried using 1) conventional warm air drying, 2) press drying, or 3) heat treatment into Thermo-S grade by the Finnish Thermowood® method. Finally, small clearwood specimens were manufactured from different within-stem positions for the measurements of physical and mechanical properties. Both press dried and heat treated specimens absorbed water at significantly slower pace than the conventionally dried specimens. In normal climate, the conventionally dried, press dried and heat treated specimens conditioned at equilibrium moisture contents of 12.2, 8.7, and 8.9 per cent, respectively. It appears that the butt logs between 2–6 metres contain the lightest and, thus, weakest wood in aspen stems. Radial compression strength was at its highest in heat treated specimens, whereas conventionally and press dried specimens did not differ from each other. Press dried specimens had the highest longitudinal compression strength, also heat treated specimens showed higher values than the conventionally dried ones. Radial Brinell hardness of press dried specimens was higher than that of conventionally dried or heat treated specimens. Both modulus of elasticity and modulus of rupture were at their highest in press dried specimens. Irrespective of the drying treatment, the tangential shear strength of European aspen specimens was approximately 5% higher than that of hybrid aspen. Heat treated specimens indicated significantly lower tangential shear strength values than the conventionally dried ones. In case of both aspen species, the longitudinal tensile strengths of heat treated specimens were significantly lower than those of conventionally and press dried specimens. Heat treated specimens had the highest variability among the results. The inherent flaws in aspen wood material, e.g., wetwood and density

Publisher

Finnish Society of Forest Science

Subject

Ecological Modeling,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3