Author:
Sumida Akihiro,Nakai Taro,Yamada Masahito,Ono Kiyomi,Uemura Shigeru,Hara Toshihiko
Abstract
We developed a ground-based method for estimating leaf area index (LAI) and vertical distribution of leaf area density (LAD) for two Betula ermanii plots, combining an allometric method for tree leaf area with the MacArthurâHorn (MH) method using a portable laser rangefinder, including a correction for changes in leaf inclination angle along the vertical gradient measured with a portable digital protractor from a canopy access tower in each plot. Vertical distribution of projected leaf area density obtained by the MH method (LADMH) was transformed to relative distribution for allotting fixed LAI to different heights. Hence, we first developed an allometric method for estimating tree leaf area for LAI determination. Trunk cross-sectional area at branching height (AB) was accurately estimated (r = 0.97) from ground-based measurements of tree dimensions. We used this method to apply pipe model allometry between tree leaf area and AB, and estimated LAI (4.56 and 4.57 m m). We then examined how leaf inclination angle affected estimation of the vertical distribution of actual LAD. Leaf inclination angle measurements revealed that actual LAD in the upper canopy was 1.5â1.8-times higher than LADMH, because of steep leaf inclination, while the correction factor was 1.15â1.25 in the lower canopy. Due to the difference among heights, vertical distribution of LAD estimated with correction for vertical change in leaf inclination was more skewed to the upper canopy than that without correction. We also showed that error in LAD distribution can result if horizontal canopy heterogeneity is neglected when applying the MH method.22â2
Publisher
Finnish Society of Forest Science
Subject
Ecological Modeling,Forestry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献