Gap-phase dynamics in the old-growth forest of Lom, Bosnia and Herzegovina

Author:

Bottero Alessandra,Garbarino Matteo,Dukic Vojislav,Govedar Zoran,Lingua Emanuele,Nagel Thomas,Motta Renzo

Abstract

We investigated forest canopy gaps in the mixed beech (Fagus sylvatica L.), silver fir (Abies alba Miller), and Norway spruce (Picea abies (L.) Karst.) old-growth forest of Lom in the Dinaric Mountains of Bosnia and Herzegovina. Gap size, age, gap fraction, gapmaker characteristics and the structure and composition of gapfillers were documented to investigate gap dynamics. The percentages of forest area in canopy and expanded gaps were 19% and 41%, respectively. The median canopy gap size was 77 m, and ranged from 11 to 708 m. Although there were many single tree-fall gaps, the majority had multiple gapmakers that were often in different stages of decay, suggesting gap expansion is important at the study site. Of the gapmakers recorded, 14% were uprooted stems, 60% snapped stems, and 26% were standing dead trees. Dendroecological analysis suggests that gap formation varied in time. The density of gapfillers was not correlated to gap size, and the species composition of gapfillers varied between seedling, sapling, and tree life stages. The results suggest that gaps are mainly formed by endogenous senescence of single canopy trees. Exogenous disturbance agents, most likely related to wind and snow, act mainly as secondary agents in breaking weakened trees and in expanding previously established gaps. Although the findings are partially consistent with other studies of gap disturbance processes in similar old-growth forests in central Europe, the observed gap dynamic places the Lom core area at the end of a gradient that ranges from forests controlled by very small-scale processes to those where large, stand replacing disturbances predominate.22

Publisher

Finnish Society of Forest Science

Subject

Ecological Modeling,Forestry

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3