Author:
Persson Torgny,Andersson Bengt,Ericsson Tore
Abstract
Results from 3 artificial freezing tests (one-year-old seedlings) and 15 field trials (9- to 21-year old trees) of half-sib offspring from first generation Scots pine (Pinus sylvestris L.) plus-trees were used to estimate the amount of additive genetic variance for autumn cold hardiness and traits assessed in the field, and the genetic correlations between them. Cold hardiness of individual seedlings was scored visually, based on the discoloration of their needles after freezing in a climate chamber. The field traits analyzed were tree vitality, tree height, spike knot frequency, branch diameter, branch angle, stem straightness, and susceptibility to infection by the pathogenic fungi Phacidium infestans L., Gremmeniella abietina (Lagerb.) Morelet, Melampsora pinitorqua (Braun) Rostr. and Lophodermella sulcigena (Rostr.) Höhn. Narrow sense individual heritabilities varied between 0.30 and 0.54 for autumn cold hardiness, 0 and 0.18 for tree vitality, 0.07 and 0.41 for tree height, and 0.01 and 0.26 for the remaining traits. Based on the results of the artificial freeze tests, our estimates of additive genetic correlations indicate that while early selection for cold hardiness can improve seedling survival rates in the field, it may also reduce growth in mild environments. It also has minor effects on quality traits and attack by common fungal diseases. The results indicate that artificial freeze testing is an appropriate method for identifying suitable clones for establishing seed orchards to supply stock for the reforestation of regions with harsh environments.
Publisher
Finnish Society of Forest Science
Subject
Ecological Modeling,Forestry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献