Influence of slope, aspect and competition index on the height-diameter relationship of Cyclobalanopsis glauca trees for improving prediction of height in mixed forests

Author:

Long Shisheng,Zeng Siqi,Liu Falin,Wang Guangxing

Abstract

Diameter at breast height (DBH) and height (H) of trees are two important variables used in forest management plans. However, collecting the measurements of H is time-consuming and costly. Instead, the H-DBH relationship is modeled and used to estimate H. But, ignoring the effects of slope, aspect and tree competition on the H-DBH relationship often impedes the improvement of H predictions. In this study, to improve predictions of (Thunb.) Oerst. tree H in mixed forests, we compared eleven H-DBH models and examined the influence of slope and aspect on the H-DBH relationship using 426 trees. We then improved Hegyi competition index and explored its effect on the H predictions by including it in the selected models. Results showed 1) There were statistically significant effects of slope and aspect on the H-DBH relationship; 2) The log transformation and exponential model performed best for sunny- and shady-steep, respectively, and the Gompertz’s model was optimal for both sunny- and shady-gentle; 3) Compared with the whole dataset, the division of the data into the slope and aspect sub-datasets significantly reduced the RMSE of H predictions; 4) Compared with the selected models without competition index, adding the original Hegyi and improved Hegyi_I into the models improved the H predictions but only the models containing the improved Hegyi_I significantly increased the prediction accuracy at the significant level of 0.1. This study implied that modeling the H-DBH relationship under different slopes and aspects and including the improved Hegyi_I provided the great potential to improve the H predictions.Cyclobalanopsis glauca

Publisher

Finnish Society of Forest Science

Subject

Ecological Modeling,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3