Abstract
The success and rate of forest regeneration following disturbance has implications for sustainable forest management, climate change mitigation, and biodiversity, among others. Systematic monitoring of forest regeneration over large and often remote areas of the boreal forest is challenging. The use of remotely sensed data to characterize post-disturbance recovery in the boreal forest has been an active research topic for more than 30 years. Innovations in sensors, data policies, curated data archives, and increased computational power have enabled new insights into the characterization of post-disturbance forest recovery, particularly following stand-replacing disturbances. Landsat time series data have emerged as an important data source for post-disturbance forest recovery assessments, with Landsat’s 40-year archive of 30-m resolution data providing consistent observations on an annual time step and enabling retrospective capacity to establish spatially explicit recovery baselines. The application of remote sensing for monitoring post-disturbance forest recovery is a rapidly growing area of research globally; however, despite the large amount of disturbance and the disproportionate effects of climate change in the boreal, the boreal biome is relatively underrepresented in the remote sensing forest recovery literature. Herein, the past and present contributions of optical time series and airborne laser scanning data to the characterization of forest recovery in boreal forests are highlighted, and future research priorities are identified.
Publisher
Finnish Society of Forest Science