Iteration empirical mode decomposition method for filling the missing data of GNSS position time series

Author:

Qiu Xiaomeng

Abstract

The Global Navigation Satellite System (GNSS) can provide the daily position time series for the geodesy and geophysical studies. However, due to various unpredictable factors, such as receiver failure or bad observation conditions, missing data inevitably exist in GNSS position time series. Most traditional time series analysis methods require the time series should be completed. Therefore, filling the missing data is a valuable step before analyzing the GNSS time series. In this study, a new method named Iteration Empirical Mode Decomposition (Iteration EMD) is proposed to fill the missing data in GNSS position time series. The simulation experiments are performed by randomly removing different missing percentages of the synthetic time series, with the added different types noise. The results show that Iteration EMD approach performs well regardless of high or low missing percentage. When the missing percentage increases from 5 % to 30 % with a step of 5 %, all the Root Mean Square Errors (RMSE) and Mean Absolute Errors (MAE) of Iteration EMD are smaller than Interpolation EMD. The relative improvements at different percentages of Iteration EMD relative to Interpolation EMD are significant, especially for the high missing percentage. The real GNSS position time series of eight stations were selected to further evaluate the performance of Iteration EMD with an average missing percentage 8.15 %. Principal Component Analysis (PCA) was performed on the filled time series, which is used to assess the interpolation performance of Iteration EMD and Interpolation EMD. The results show that Iteration EMD can preserve variance 75.9 % with the first three Principal Components (PC), more than 66.5% of interpolation EMD. Therefore, we can conclude that Iteration EMD is an efficient interpolation method for GNSS position time series, which can make full use of available information in existing time series to fill the missing data.

Publisher

Institute of Rock Structure and Mechanics, AS CR

Subject

Geology,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3