ANALYSIS OF THE FINANCIAL PERFORMANCE OF MACHINE LEARNING MODELS FOR PREDICTING THE DIRECTION OF CHANGES IN CEE AND SEE STOCK MARKET INDICES WITH DIFFERENT CLASSIFICATION EVALUATION METRICS

Author:

Vlah Jerić Silvija,

Abstract

Cilj analize je istražiti utjecaj odabira metrike za vrednovanje klasifikatora na financijsku uspješnost sustava trgovanja temeljenih na modelima strojnog učenja za burzovne indekse iz zemalja CEE i SEE regija. Tehničkim indikatorima se koriste kao značajke za odabrane algoritme strojnog učenja pri predviđanju smjera promjena vrijednosti indeksa, tj. klasificiranje dana trgovanja u dvije klase. Istraživanje je pokazalo da odabir metrike za vrednovanje klasifikatora nema veliki utjecaj na financijsku uspješnost takvog sustava, no ipak su najveći prosječni prinosi po transakciji postignuti maksimizacijom točnosti. Nadalje, algoritam slučajne šume i naivni Bayesov klasifikator dali su najveće prosječne prinose korištenjem točnosti, dok su stroj potpornih vektora i algoritam k najbližih susjeda najveće prosječne prinose postigli pri korištenju površine ispod krivulje operativnih karakteristika. Utvrđeno je da očekivano veliki utjecaj na financijsku uspješnost ima odabir algoritma za strojno učenje te da algoritam slučajne šume daje najbolje rezultate na ovim podacima.

Publisher

University of Dubrovnik

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3