Numerical Modeling of Hydrodynamic Performance on Porous Slope Type Floating Breakwater

Author:

Sujantoko Sujantoko, ,Djatmiko Eko Budi,Wardhana Wisnu,Gemilang Firmasyah Is Naldi

Abstract

A breakwater is a coastal building that aims to break up or withstand wave energy that enters the beach so that the characteristics of the incoming waves are by calculations and can reduce abrasion on the shoreline. Designing a floating breakwater is very complicated because it depends on many aspects. These fundamental aspects depend on each other, so if one of these aspects changes, the integrity of the floating breakwater structure will also change. One of these aspects is the magnitude of the transmission and reflection coefficients generated by the floating breakwater. This research will study the hydrodynamic performance of floating breakwater due to variations in slope and porosity in reducing and reflecting waves with computational fluid dynamics (CFD). The slope-porous floating breakwater dimension is based on previous experimental data, including a constant water depth of 0.75 m, a wave height of 0.05 - 0.125 m, and a wave period of 1.1 - 2 sec on regular waves. The results of the numerical model validation and experiments on all variations of the floating breakwater model are quite good, which is less than 10% for both wave transmission and reflection. Analysis of the influence of changes in the mooring line angle, the simulation is carried out at an angle of 30 deg to 90 deg and produces an average transmission coefficient of 0.79 and a reflection of 0.21. While the effect of changes in water level elevation (0.85 m, 0.75 m, and 0.65 m) gives a reasonably significant average transmission coefficient of 0.85 and a reflection of 0.13. The mooring line angle will be gentler at high tide, and the transmission and reflection coefficients will be higher. However, the mooring line will loosen at low tide, causing the structure to move more freely and eliminating the function of the floating breakwater itself so that the tidal phenomenon becomes a challenge for coastal experts in designing structures to produce effective and efficient hydrodynamic performance.

Publisher

University of Dubrovnik

Subject

Process Chemistry and Technology,Ocean Engineering,Transportation,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3