Hydrodynamic Force of Resistance of Tourist Underwater Vehicle’s Bare Hull with Diff erent Heads using OpenFOAM

Author:

Saghi Hassan, ,Parunov Joško

Abstract

Power reduction is the central goal to maximize cruising duration of tourist underwater vehicles (UV) that can be achieved by shaping the hull. So, in this paper, hydrodynamic force of resistance of the tourist UV’s bare hull is analysed. A numerical model based on Computational Fluid Dynamics in OpenFOAM is developed to simulate the longitudinal movement of an UV in a viscous and incompressible fluid for the infinite water depth. Three head geometries, including both spherical heads (S-S), spherical bow and elliptical stern head (S-E), and UV with both elliptical heads (E-E) are compared. At the first step, the effects of the length-to-diameter ratio and forward speed is studied for the S-S UV. The mesh size is calibrated using Grid Convergence Index, provided by ASME, while the model validation is based on the results for cube and sphere as well as by comparison with resistance coefficient of a SUBOFF bare hull. S-E and E-E UVs are then analysed for typical length-to-diameter ratio, comparing their force of resistance to the S-S type. The elongated elliptical heads are in many cases found favourable compared to the spherical heads. The results of this study may be useful for the conceptual design of tourist UV and for verification of the complex numerical models that are necessary to account for the influence of appendages on the force of resistance of such innovative UV.

Publisher

University of Dubrovnik

Subject

Process Chemistry and Technology,Ocean Engineering,Transportation,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3