Hindcast of Significant Wave Heights in Sheltered Basins Using Machine Learning and the Copernicus Database

Author:

Bujak Damjan, ,Carević Dalibor,Bogovac Tonko,Kulić Tin

Abstract

Long-term time series of wave parameters play a critical role in coastal structure design and maritime activities. At sites with limited buoy measurements, methods are used to extend the available time series data. To date, wave hindcasting research using machine learning methods has mainly focused on filling in missing buoy measurements or finding a mapping function between two nearshore buoy locations. This work aims to implement machine learning methods for hindcasting wave parameters using only publicly available Copernicus data. Ensemble regression and artificial neural networks were used as machine learning methods and the optimal hyperparameters were determined by the Bayesian optimization algorithm. As inputs, data from the MEDSEA reanalysis wave model were used for the wave parameters and data from the ERA5 atmospheric reanalysis model were used for the wind parameters. The results of this study show that the normalized RMSE of the test data improved by 29% for Rijeka and 12% for Split compared to the original MEDSEA wave hindcast at buoy locations. The proposed method was extremely efficient in removing bias in the original MEDSEA hindcasts (e.g., NBIAS = -0.35 for Rijeka) to negligible values for both Split and Rijeka (NBIAS < 0.03).

Publisher

University of Dubrovnik

Subject

Process Chemistry and Technology,Ocean Engineering,Transportation,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3