Experimental and Numerical Study on the Hydrodynamic Performance of Suspended Curved Breakwaters

Author:

Hussein Karim Badr, ,Ibrahim Mohamed

Abstract

The purpose of breakwaters is to protect the ports, beaches, or beach facilities from strong waves and storms, as they help establish calm inside the port and thus achieve safety for ships and ease of operation. This paper presents an experimental and numerical study of unconventional alternatives to the vertical breakwater in order to evaluate the hydrodynamic performance of the proposed models. Two proposed cases for a semi-submerged breakwater were selected in the form of a half-pipe section with an inside diameter of 20 cm and a thickness of 1 cm. Case (a) was of the concave type of semicircular breakwater, while case (b) was of the convex type. Numerical modeling FLOW 3D was used to construct numerous scenarios for numerical simulation of the proposed breakwaters. The obtained results indicates that, when comparing the wave transmission coefficient (Kt) and its reflection coefficient (Kr) with the relative water depth (h/L), the transmission coefficient decreased with the relative height of the wave, while the reflection coefficient was completely reversed. In case (a), Kt was less than in case (b) at a range of 10% to 15%, while Kr in case (a) was bigger than in case (b) at a range of 5% to 10%. When the wave hit the breakwater, it was reflected back as its energy is dissipated in less water depth and its speed decreases as it approaches the port. The velocity of the wave decreases as it approaches the bottom, which means that the wave is affected by the depth of the water, i.e. the lower the water depth, the lower the wave velocity. Case (a) was more efficient and effective in wave dissipation, current velocity, and bed stability than case (b), so it is recommended to use case (a) due to its efficiency in protecting coastal areas and generating electricity.

Publisher

University of Dubrovnik

Subject

Process Chemistry and Technology,Ocean Engineering,Transportation,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3