Image Processing Techniques based Feature Extraction for Insect Damage Areas

Author:

ALKAN Ece1ORCID,AYDIN Abdurrahim1ORCID

Affiliation:

1. DÜZCE ÜNİVERSİTESİ

Abstract

Monitoring of forests is important for the diagnosis of insect damage to vegetation. Detection and monitoring of damaged areas facilitates the control of pests for practitioners. For this purpose, Unmanned Aerial Vehicles (UAVs) have been recently used to detect damaged areas. In order to distinguish damage areas from healthy areas on UAV images, it is necessary to extract the feature parameters of the images. Therefore, feature extraction is an important step in Computer Aided Diagnosis of insect damage monitored with UAV images. By reducing the size of the UAV image data, it is possible to distinguish between damaged and healthy areas from the extracted features. The accuracy of the classification algorithm depends on the segmentation method and the extracted features. The Grey-Level Co-occurrence Matrix (GLCM) characterizes areas texture based on the number of pixel pairs with specific intensity values arranged in specific spatial relationships. In this paper, texture characteristics of insect damage areas were extracted from UAV images using with GLCM. The 3000*4000 resolution UAV images containing damaged and healthy larch trees were analyzed using Definiens Developer (e-Cognition software) for multiresolution segmentation to detect the damaged areas. In this analysis, scale parameters were applied as 500, shape 0.1, color 0.9 and compactness 0.5. As a result of segmentation, GLCM homogeneity, GLCM contrast and GLCM entropy texture parameters were calculated for each segment. When calculating the texturing parameters, neighborhoods in different angular directions (0,45,90,135) are taken into account. As a result of the calculations made by considering all directions, it was found that GLCM homogeneity values ranged between 0.08 - 0.2, GLCM contrast values ranged between 82.86 - 303.58 and GLCM entropy values ranged between 7.81 - 8.51. On the other hand, GLCM homogeneity for healthy areas varies between 0.05 - 0.08, GLCM contrast between 441.70 - 888.80 and GLCM entropy between 8.93 - 9.40. The study demonstrated that GLCM technique can be a reliable method to detection of insect damage areas from UAV imagery.

Publisher

European Journal of Forest Engineering

Subject

Engineering (miscellaneous),Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3