Indoor air quality and early detection of mould growth in residential buildings: a case study

Author:

Brambilla Arianna1,Candido Christhina2,Gocer Ozgur1

Affiliation:

1. School of Architecture, Design and Planning, The University of Sydney, Sydney, Australia

2. Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne, Australia

Abstract

Mould growth affects one in three homes, and it is the biggest cause for complaints and litigations filed to the relevant authorities in Australia, while also significantly affecting the physical and psychological health of the building’s occupants. Indoor mould is caused by excessive dampness, resulting from poor architectural specification, construction and maintenance practices, as well as inappropriate behaviour of the occupants. The consequences range from early biodeterioration of building materials, requiring anticipated renovation works, to deterioration of the indoor environment, posing a serious threat to the building’s occupants. This study investigates indoor air quality (IAQ) and mould growth, providing a snapshot of the current IAQ of Australian residential buildings regarding air pollutants. It uses a case study representative of the typical Australian suburban home to investigate the effects of unnoticed mould growth. The results of the monitoring campaign indicate that buildings with a high concentration of fungal spores are also more likely to present poor IAQ levels, high concentrations of particulate matters (PM10 and PM2.5) and carbon dioxide (CO2). This research suggests the need for the development of early detection strategies that could minimise the health hazard to people, thereby preventing the need for any major renovations.

Publisher

UCL Press

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3