Effects of Ir and B co-doping on H2 adsorption properties of armchair carbon nanotubes using Optical Spectra Analysis for energy storage

Author:

Itas Yahaya SaaduORCID,Suleiman Abdussalam Balarabe,Ndikilar Chifu E.,Lawal Abdullahi,Razali Razif,Danmadami Amina Muhammad

Abstract

In this research, DFT+U approach was used to investigate the performance of Iridium (Ir) and Boron (B) co-doped armchair (8, 8) Single-walled Carbon Nanotube (SWCNT). Calculations of the structural electronic and optical spectra analysis of the system under study were carried out using the ab’initio quantum simulations implemented in Quantum ESPRESSO and thermo_pw codes within the popular density functional theory. In the doping process, carbon atoms have been replaced by Ir and B atoms in the SWCNT, the investigations were done on the basis of distance of H2 (d) from the co-doped SWCNT at intervals of 6.12 Å, 6.45 Å and 6.77Å, variations of temperature, variations of external electric field, band gaps, optical adsorptions and binding energy variations were all taken in to account. It is found that Ir/B co-doping in pristine SWCNT significantly enhanced the H2 adsorption capacity of the SWCNT. Furthermore, an increase in temperature decrease the performance ability of the co-doped SWCNT, negative adsorptions intensities were recorded by temperature increase by 650, 700 and 750 0C, this can be termed as exothermic adsorption. Therefore it can be demonstrated that H2 by co-doped SWCNT undergoes endothermic adsorption under ambient temperature and shows exothermic adsorption under higher temperatures.

Publisher

IPS Intelligentsia Publishing Services

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3