Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes

Author:

Indrayuni Elly

Abstract

Saat ini produk kosmetik sudah menjadi kebutuhan utama kaum wanita yang merupakan target utama dari industri kosmetik. Banyak website yang menyediakan informasi tentang produk kosmetik dengan memberikan banyak informasi berupa gambar dan review pengguna. Membaca semua review yang ada pada sebuah website tentu sangat memakan waktu, karena terlalu banyak opini yang ada dari berbagai sumber website yang berbeda. Oleh karena itu, analisa sentimen merupakan salah satu solusi mengatasi masalah untuk mengelompokan opini atau review menjadi opini positif atau negatif secara otomatis. Naive Bayes memiliki kelebihan yaitu sederhana, cepat dan memiliki akurasi yang tinggi. Penerapan fitur generate            n-gram pada penelitian ini diharapkan dapat meningkatkan nilai akurasi algoritma Naive Bayes. N-gram dianggap dapat mengurangi selisih antara klasifikasi kelas positif dan negatif sehingga dapat meningkatkan rata-rata akurasi akhir suatu algoritma. Hasil klasifikasi sentimen pada penelitian ini terdiri dari dua label class, yaitu positif dan negatif. Nilai akurasi yang dihasilkan akan menjadi tolak  ukur untuk mencari model pengujian terbaik untuk kasus klasifikasi sentimen. Evaluasi dilakukan menggunakan 10 fold cross validation. Pengukuran akurasi diukur dengan confusion matrix dan kurva ROC. Hasil penelitian menunjukkan penerapan generate n-gram pada tahap preprocessing mempengaruhi nilai akurasi dan nilai AUC yang dihasilkan. Nilai akurasi terbaik yang dihasilkan pada penelitian ini yaitu 90.50% dengan nilai AUC sebesar 0.715 pada penerapan generate n-gram = 2.

Publisher

Universitas Bina Sarana Informatika

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3