Middle-Upper Triassic stratigraphy and structure in the Alt Palància region (eastern Iberian Chain): A multidisciplinary approach

Author:

Ortí F.,Guimerà J.ORCID,Götz A.E.

Abstract

The present study provides new data of the Middle-Upper Triassic successions and their deformation in the eastern Iberian Chain, where contractional tectonics during the Cenozoic disrupted this Mediterranean type of Triassic rocks. The succession, divided into three Muschelkalk units, was studied in the Alt Palància area. In this area, both the lower and upper Muschelkalk consist of two main types of sub-units, those made up of carbonate and those of carbonate-marl alternation. The marked similarity observed between the evaporite units of the middle Muschelkalk and the Keuper humpers their unambiguous discrimination in the field. The integration of geological mapping, stratigraphic logging, palynological dating and gypsum isotope analysis carried out provided that: i) a change in the structural style, facies, and depositional thickness occurs across a SW to NE transect at both sides of the Espina-Espadà Fault, providing evidence for the extensional activity of this major structure; ii) palynological data assign Anisian age to the Röt facies and the lower and the middle Muschelkalk units, and Ladinian to the upper Muschelkalk unit; iii) the δ34SCDT and δ18OSMOW values of gypsum reveal as a useful proxy to discriminate between the middle Muschelkalk (δ34S: 15.6 to 17.8‰) and the Keuper (δ34S: 14 to 15.5‰) units; and iv) the isotopic signature also helps to identify clayey-marly gypsiferous outcrops made up of the two evaporite facies due to tectonic juxtaposition. These results confirm the Mediterranean type of Triassic rocks for the entire Alt Palància and other areas to the NE. This multidisciplinary approach reveals as a robust methodology to study Triassic basins in Iberia and to other geological domains where the carbonate-evaporite successions have been greatly disrupted by tectonism.

Publisher

Edicions de la Universitat de Barcelona

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3