The elusive crustal resistive boundary beneath the Deccan Volcanic Province and the western Dharwar craton, India

Author:

Akkapolu Pratap,Bukke Pradeep Naick,K Kusham,Paluri Rama Rao,Kasturi Naganjaneyulu

Abstract

The electrical properties of the boundary beneath the Deccan Volcanic Province and the western Dharwar craton are imaged by using the magnetotelluric method. The magnetotelluric study was carried out along a 150km long WNW-ESE profile from Belgaum (in the Deccan Volcanic Province) to Haveri (in the western Dharwar craton).Data from 19 magnetotelluric stations spaced 10-15km apart were used. The dominant regional geo-electric strike direction obtained is N20ºE. Two-dimensional (2-D) inversion is done by using the non-linear conjugate gradient scheme for both apparent resistivity and phase. The 2-D resistivity model shows a high electrical resistivity character (>10,000ohm-m) in the western Dharwar craton. Two conductive anomalies are mapped in the crustal region. In the WNW side of the profile, a conductive feature (~200ohm-m) is imaged in the mid-lower crust and, in the central part of the profile another conductive feature is mapped in the lower crust. The conductive features robustness is tested using linear and non-linear sensitivity analyses. The conductor mapped in the WNW part of the profile is considered as a deep seated fault representing a boundary or a rift related feature beneath the Deccan Volcanic Province and the western Dharwar craton. A zone of enhanced conductivity (<50ohm-m) at an approximate depth of 10-30km may represent the presence of the rift in the region. This conducting feature on the Western side of the E-W trending Kaladgi Basin can be interpreted as the extension of the Kaladgi Basin further west. A well-correlated geological cross-section is also derived to interpret the resistive features mapped in this study. The electrical resistivity nature of the crust is compared with other regions of the world.

Publisher

Edicions de la Universitat de Barcelona

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3