Can Artificial Intelligence help provide more sustainable feed-back?

Author:

Puertas Prats EloiORCID,Cano García María ElenaORCID

Abstract

Peer assessment is a strategy wherein students evaluate the level, value, or quality of their peers' work within the same educational setting. Research has demonstrated that peer evaluation processes positively impact skill development and academic performance. By applying evaluation criteria to their peers' work and offering comments, corrections, and suggestions for improvement, students not only enhance their own work but also cultivate critical thinking skills. To effectively nurture students' role as evaluators, deliberate and structured opportunities for practice, along with training and guidance, are essential. Artificial Intelligence (AI) can offer a means to assess peer evaluations automatically, ensuring their quality and assisting students in executing assessments with precision. This approach allows educators to focus on evaluating student productions without necessitating specialized training in feedback evaluation. This paper presents the process developed to automate the assessment of feedback quality. Through the utilization of feedback fragments evaluated by researchers based on pre-established criteria, an Artificial Intelligence (AI) Large Language Model (LM) was trained to achieve automated evaluation.  The findings show the similarity between human evaluation and automated evaluation, which allows expectations to be generated regarding the possibilities of AI for this purpose. The challenges and prospects of this process are discussed, along with recommendations for optimizing results. Artificial intelligence can offer a means to assess peer evaluations automatically, ensuring their quality and assisting students in executing assessments with precision. This approach allows educators to focus on evaluating student productions without necessitating specialized training in feedback evaluation. This paper presents the process developed to automate the assessment of feedback quality. Through the utilization of feedback fragments evaluated by researchers based on pre-established criteria, an artificial intelligence Large Language Model was trained to achieve automated evaluation. The challenges and prospects of this process are discussed, along with recommendations for optimizing results.

Publisher

Edicions de la Universitat de Barcelona

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3