The effect of thermal gradient design on the evaluation of thermoregulation in snakes

Author:

Abstract

Hertz et al. (1993) designed what is now the most widely used protocol to analyse the thermal strategies and efficiency of small squamates. Preferred temperature range (Tp) is one of the most important variables required for determining the thermal efficiency index, and is calculated by monitoring the body temperature of the individuals in an enclosure containing a thermal gradient. Although thermoregulation studies of lizards have traditionally employed thermal gradients under laboratory conditions, this approach is not suitable for snakes given that such thermal gradients do not accurately represent their natural thermal environment and thus may result in snakes selecting suboptimal temperatures. Here, we compare the results of this thermal efficiency protocol using a laboratory thermal gradient (LG) and a semi-captivity thermal gradient (SCG) in the rattlesnake Crotalus polystictus. We found traces of seasonal variation in the SCG Tp, but this could not be assessed in the LG. Tp from the LG was much higher (29 – 34.3 °C) than from the SCG (22.5-30.9 °C). Values for the accuracy of thermoregulation (db) and thermal quality of the environment (de) indices from the LG were consistently higher than from the SCG. However, the efficiency of thermoregulation (E) was higher when calculated from the SCG. Tp estimates were wider than most that have been obtained from other snake species, suggesting that C. polystictus is eurythermic. The Blowin Demers and Weatherhead index was nearly identical in both gradients. Results from the LG indicated that C. polystictus is an inaccurate and inefficient thermoregulator, due to the higher temperatures chosen in this environment. In contrast, results from the SCG suggested that it is a highly accurate and active thermoregulator. We suggest that the LG could represent a stressful environment for snakes, and, as a consequence, they might select higher temperatures to increase anti-predatory performance at the expense of less efficient thermoregulation. Generally, a thermal gradient that more accurately replicates the natural habitat of snake species should reduce stress and result in more robust estimates of thermoregulatory variables.

Publisher

British Herpetological Society

Subject

Nature and Landscape Conservation,Ecological Modelling,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3