Abstract
Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this article, we introduce the cozero-divisor graph $\acute{\Gamma}_I(R)$ of $R$ and explore some of its basic properties. This graph can be regarded as a dual notion of an ideal-based zero-divisor graph.
Publisher
Sociedade Paranaense de Matematica
Reference17 articles.
1. M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35, 753-762, (2011).
2. M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35, 935-944, (2012).
3. M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings, Appl. Math. 4, 979-985, (2013). https://doi.org/10.4236/am.2013.47135
4. D. F. Anderson, Sh. Ghalandarzadeh, S. Shirinkam, and P. Malakooti Rad, On the diameter of the graph ΓAnn(M) (R), Filomat 26 (3), 623-629, (2012). https://doi.org/10.2298/FIL1203623A
5. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434-447, (1999). https://doi.org/10.1006/jabr.1998.7840