Abstract
In [17], A. chillali et al introduce a new cryptographic method based on matrices over a finite field Fpn , where p is a prime number. In this paper, we will generate this method in a new group of square block matrices based on an elliptic curve, called "elliptic" matrices.
Publisher
Sociedade Paranaense de Matematica
Reference17 articles.
1. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren, Handbook of elliptic and hyperelliptic cryptography. Chapman and Hall/CRC (2006).
2. I. F. Blake, G. Seroussi and N. P. Smart, Elliptic Curves in Cryptography. Cambridge (1999).
3. I. F. Blake, G. Seroussi and N. P. Smart, Advances in Elliptic Curve Cryptography. Cambridge (2005).
4. C. Boyd & A. Mathuria, Protocols for Authentication and Key Establishment, Information Security and Cryptography Series, Springer-Verlag, Heidelberg, (2003).
5. A. Chillali, Cryptography over elliptic curve of the ring Fq[e], e4 = 0, World Acad. of Sci. Eng. & Technol. 78 (2011) 848-850.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Elliptic curves over a finite ring;Annals of the University of Craiova Mathematics and Computer Science Series;2023-12-18
2. Generalized Fibonacci Sequences for Elliptic Curve Cryptography;Mathematics;2023-11-15