Abstract
In this work, we study the following quasilinear Neumann boundary-value problem$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$where $\Omega$ is a bounded open domain in $\>I\!\!R^{N}$, $(N\geq 2)$. We prove the existence of a weak solution for $f \in L^{\infty}(\Omega)$ and $g\in L^{\infty}(\partial\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.
Publisher
Sociedade Paranaense de Matematica
Reference16 articles.
1. Y. Akdim, M. Belayachi, H. Hjiaj and M. Mekkour, Entropy solutions for some nonlinear and noncoercive unilateral elliptic problems, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), 1373–1392.
2. A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annal. di. Mat. Pu. ed. Appli. , 182(1), 53–79, 2003
3. F. Andereu, J. M. Mazon, S. Segura De leon and J. Teledo, Quasi-linear elliptic and parabolic equations in L1 with non-linear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), pp. 183-213.
4. S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Diff. Int. Equa. Vol 21, no. 5–6 (2008), 401–419.
5. M. B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), no. 3, 245–270.