Properties at potential blow-up times for Navier-Stokes

Author:

Zingano Paulo R.,Lorenz Jens

Abstract

In this paper we consider the Cauchy problem for the 3D navier-Stokes equations for incompressible flows. The initial data are assume d to be smooth and rapidly decaying at infinity. A famous open problem is whether classical solution can develop singularities in finite time. Assuming the maximal interval of existence to be finite, we give a unified discussion of various known solution properties as time approaches the blow-up time.

Publisher

Sociedade Paranaense de Matematica

Subject

General Mathematics

Reference54 articles.

1. 1. Seregin G. A certain necessary condition of potential blowñup for Navier-Stokes equations. Comm Math Phys. 2012; 312: 833-845.

2. 2. Tao T. Finite time blowup for an averaged three-dimensional Navier-Stokes equation. Submitted to J. Amer. Math. Soc.

3. 3. Leray J. Essai sur le mouvement díun fluide visqueux emplissant líespace. Acta Math. 1934; 63: 193-248.

4. 4. Borel A, Henkin GM, Lax PD. Jean Leray (1906 - 1998). AMS Notices. 2000; 47: 350-359.

5. 5. Fefferman CL. Existence and smoothness of the NavierñStokes equations. Jaffe A, Wiles A, editors. In: The Millenium Prize Problems. Providence: American Mathematical Society. 2006; 57-70. (Freely available electronically at http://www.claymath.org/millenium/Navier-Stokes_Equations/NavierStokes.pdf.)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3