Author:
Zitouni Mohamed,Djellit Ali,Ghannam Lahcen
Abstract
In this paper, we study the existence of radial positive solutions for nonvariational elliptic systems involving the p(x)-Laplacian operator, we show the existence of solutions using Leray-Schauder topological degree theory, sustained by Gidas-Spruck Blow-up technique.
Publisher
Sociedade Paranaense de Matematica
Reference13 articles.
1. Garcia-Huidobro, M., Guerra, I., Manasevich, R.: Existence of positive radial solutions for a weakly coupled system via Blow up, Abstract Appl. Anal. 3 , 105-131, (1998). https://doi.org/10.1155/S1085337598000463
2. Garcia-Huidobro, M., Manasevich, R.,Schmitt, K.; Some bifurcation results for a class of p-Laplacian like operators, Differential and Integral Equations 10, 51-66, (1997). https://doi.org/10.57262/die/1367846883
3. Garcia-Huidobro, M., Manasevich, R., Ubilla, P.; Existence of positive solutions for some Dirichlet problems with an asymptotically homogeneous operator, Electron. J. Diff. Equ.10, 1-22, (1995).
4. Gidas, B., Spruck, J.; A priori Bounds for Positive Solutions of Nonlinear Elliptic Equations, Comm. in PDE, 6(8), 883-901, (1981). https://doi.org/10.1080/03605308108820196
5. Clement, Ph., Manasevich, R., Mitidieri, E., Positive solutions for a quasilinear system via Blow up, Comm. Partial Differential Equations 18 (12), 2071-2106, (1993). https://doi.org/10.1080/00927879308824124