1. Brannan, D. A., Taha, T. S., On some classes of bi-univalent functions, Studia Universitatis Babes-Bolyai, Series Mathematica 31, 70-77, (1986).
2. Brannan, D. A., Clunie, J., Aspect of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, Academic Press, New york and London, 1980.
3. Breaz, D., Breaz, N., Sirvastava, H. M., An extention of the univalent conditions for a family of integral operators, Appl. Math. Lett. 22, 41-44, (2009). https://doi.org/10.1016/j.aml.2007.11.008
4. Caglar, M., Orhan, H., Ya˘gmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat. 27, 1165-1171, (2013). https://doi.org/10.2298/FIL1307165C
5. Duren, P. L., Univalent Functions, Springer-Verlag, New York, Berlin, 1983.