Abstract
In this paper, we introduce the concepts of $n$-absorbing and strongly $n$-absorbing second submodules as a dual notion of $n$-absorbing submodules of modules over a commutative ring and obtain some related results. In particular, we investigate some results concerning strongly 2-absorbing second submodules.
Publisher
Sociedade Paranaense de Matematica
Reference27 articles.
1. D. F. Anderson and. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672, (2011).
2. H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine Journal of Mathematics, 8 (2) (2019), 159–168.
3. H. Ansari-Toroghy and F. Farshadifar, Classical and strongly classical 2-absorbing second submodules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (1) (2020), 123-136.
4. H. Ansari-Toroghy and F. Farshadifar, 2-absorbing and strongly 2-absorbing secondary submodules of modules, Le Matematiche 72 (11), 123-135, (2017).
5. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4), 1189–1201, (2007).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Some remarks on the dual notion of n-absorbing primary submodules;Journal of Algebra and Its Applications;2023-10-20
2. The dual notion of fully cancellation modules;Journal of Discrete Mathematical Sciences and Cryptography;2021-05-17