Affiliation:
1. Azarbaijan Shahid Madani University
Abstract
In this work, we are concerened with the fractional differential equation \begin{displaymath}D^{\alpha}_{0^+} u(t)+f(t,u(s))=0,\quad 1<\alpha\leq 2\end{displaymath}where $D^\alpha_{0^+}$ is the standard Riemann-Liouville fractional derivative, subject to the local boundary conditions\begin{displaymath}u(0)=0,\quad u(1)+\int_0^\eta u(t)dt=0, \quad 0\leq \eta< 1.\end{displaymath}We try to obtain the existence of positive solutions by using some fixed point theorems.\end{abstract}
Publisher
Sociedade Paranaense de Matematica
Reference42 articles.
1. 1. Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272(1), 368-379, (2002).
2. 2. Ahmadkhanlu A, Jahanshahi M., On the Existence and Uniqueness of Solution of Initial Value problem for Fractional order Differential Equations on Time scales, Bull. Ira. Math. Soc. 38(1), 241-252, (2012).
3. 3. Bagley, R. I., A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27(3), 201-210, (1983).
4. 4. Bai, Z., Lu, H.S., Positive solutions of boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl.,311, 495-505, (2005).
5. 5. Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72, 916-924, (2010).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献