Abstract
A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special spanning subgraph in Γ(M).
Publisher
Sociedade Paranaense de Matematica
Reference21 articles.
1. Akbari, S., Habibi, M., Majidinya, A., Manaviyat, R.: A note on comaximal graph of non-commutative rings, Algebras and Representation Theory, 16 (2) (2013) 303-307.
2. Anderson, D. F., Badawi, A.: The total graph of a commutative ring, J. of Algebra, 320 (2008) 2706–2719.
3. Ashrafi, N.; Maimani, H.R.; Pournaki, M.R.; Yassemi, S.: Unit graphs associated with rings, Comm. Algebra, 38 (8) (2010) 2851–2871.
4. Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra, Addison-Wesley, London, 1969.
5. Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules, Managing Editors P. R. Halmos, 1978.