Abstract
Let $K=Q(\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\neq 0$(de la Vall\'{e}e Poussin's Theorem).We prove that the series $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p^{s}}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)
Funder
Department of Science and Technology, Ministry of Science and Technology, India
Publisher
Sociedade Paranaense de Matematica
Reference16 articles.
1. J. Andrade, Hilbert-Polya Conjecture,Zeta Functions and Bosnic Quantum Field Theorees, International Journal of Modern Physics A, 28, (2013).
2. Tom Apostol, Introduction to Analytic Number Theory, Springer, (1976).
3. L. J. Goldstein, Analytic Number Theory, Prentice Hall, (1971).
4. G. Hardy, ”Ramanujan: 12 Lectures suggested by his life and work”, Chelsea, (1959).
5. E. Hlawka, J.Schoipengeir, R.Taschner Geometric and Analytic Number Theory, Springer, (1992).