Author:
Pari Dhivya,Radenovic Stojan,Muthiah Marudai,Bin-Mohsin Bandar
Abstract
The purpose of this paper is to prove coupled fixed point theorems using simulation functions that extend the results of Kojasteh et al . As an application we prove a coupled best proximity points using simulation functions.
Funder
Council of Scientific and Industrial Research, India
King Saud University
Publisher
Sociedade Paranaense de Matematica
Reference28 articles.
1. Khojasteh, F, Shukla, S, and Radenovic, S., "A new approach to the study of fixed point theorems via simulation functions ". Filomat, vol. 29, no. 6, pp. 1189-1194, 2015. https://doi.org/10.2298/FIL1506189K
2. Karapinar, E.,Fixed Points Results via Simulation Functions. Filomat, 2016, 30, 2343-2350. https://doi.org/10.2298/FIL1608343K
3. Tchier, F, Vetro, C, and Vetro, F., Best approximation and variational inequality problems involving a simulation function. Fixed Point Theory Appl. (2016) 2016:26. https://doi.org/10.1186/s13663-016-0512-9
4. Samet, B., Best proximity point results in partially ordered metric spaces via simulation functions. Fixed Point Theory Appl. (2015) 2015:232. https://doi.org/10.1186/s13663-015-0484-1
5. Chanda, A, Dey, LK, Radenovic, S,Simulation functions: A survey of recent results. RACSAM, https//:doi.org/10.1007/s13398-018-0580-2/(2018).