Author:
Massar Mohammed,Hssini EL Miloud,Tsouli Najib
Abstract
This paper studies the existence and multiplicity of weak solutions for the following elliptic problem\\$\Delta(\rho|\Delta u|^{p-2}\Delta u)=\lambda m(x)|u|^{p-2}u+f(x,u)+h(x)$ in $\Omega,$\\$u=\Delta u=0$ on $\partial\Omega.$By using Ekeland's variationalprinciple, Mountain pass theorem and saddle point theorem, theexistence and multiplicity of weak solutions are established.
Publisher
Sociedade Paranaense de Matematica
Reference11 articles.
1. 1. M. J. Alves, R. B. Assunção, P. C. Carrião, O. H. Miyagaki, Multiplicity of non trivial solutions to a problem involving the weighted p-biharmonic operator, Matemática Contemporânea, 36 (2009) 11-27.
2. 2. B. E. Breckner, D. Ropovš, C. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket, Nonlinear Anal., 73 (2010) 2980-2990.
3. 3. P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985) 142-149.
4. 4. C. Li, C. L. Tang, Three solutions for a Navier boundary value problem involving the pbiharmonic, Nonlinear Anal., 72 (2010), 1339-1347.
5. 5. C. Li, C. L. Tang, Existence of three solutions for (p,q)-biharmonic systems, Nonlinear Anal., 73 (2010), 796-805.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献