Affiliation:
1. Rajiv Gandhi University
2. Duzce University
3. Fatih University
Abstract
The aim of the paper is introduced the composition of the two infinite matrices $\Lambda=(\lambda_{nk})$ and $\widehat{F}=\left( f_{nk} \right).$ Further, we determine the $\alpha$-, $\beta$-, $\gamma$-duals of new spaces and also construct the basis for the space $\ell_{p}^{\lambda}(\widehat{F}).$ Additionally, we characterize some matrix classes on the spaces $\ell_{\infty}^{\lambda}(\widehat{F})$ and $\ell_{p}^{\lambda}(\widehat{F}).$ We also investigate some geometric properties concerning Banach-Saks type $p.$Finally we characterize the subclasses $\mathcal{K}(X:Y)$ of compact operators by applying the Hausdorff measure of noncompactness, where $X\in\{\ell_{\infty}^{\lambda}(\widehat{F}),\ell_{p}^{\lambda}(\widehat{F})\}$ and $Y\in\{c_{0},c, \ell_{\infty}, \ell_{1}, bv\},$ and $1\leq p<\infty.$
Publisher
Sociedade Paranaense de Matematica
Reference39 articles.
1. A. Alotaibi, M. Mursaleen, B. AS. Alamri, S. A. Mohiuddine, Compact operators on some Fibonacci difference sequence spaces, J. Inequal. Appl. 2015(2015) 9 pages.
2. B. Altay, F. Basar, Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336 (2007), 632-645.
3. J. Banas, K. Goebel, Measure of non-compactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York · Basel, 1980.
4. F. Basar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. TMA 68 (2008), 273-287.
5. F. Basar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (1) (2003), 136-147.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献