Abstract
In this article, we discuss few properties of $L^r$-Henstock-Kurzweil (in short $L^r$-HK) integrable functions, introduced by Paul Musial in \cite{MS}. We re-defined $L^r$-bounded variations. We have proved that $L^r$-Henstock-Kurzweil integrable functions are Denjoy integrable.
Publisher
Sociedade Paranaense de Matemática
Reference16 articles.
1. R. G. Bartle, A Modern Theory of Integration, AMS, 2001.
2. A. P. Calderón and A. Zygmund, Local properties of Solutions of elliptic partial differential equations, Studia. Mathematica, 20, (1961), 171-225.
3. J. L. Gámez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math., 2, (1998), 115-133.
4. R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math., 1, (1989), 73-91.
5. Russell A. Gordon,The Integrals of Lebesgue, Denjoy, Perron, and Henstock, AMS (1991).