Abstract
In this paper, we introduce the concept of graded S−comultiplication modules. Several results concerning graded S−comultiplication modules are proved. We show that N is a graded S−second submodule of a graded S−comultiplication R−module M if and only if Ann_R(N) is a graded S−prime ideal of R and there exists x ∈ S such that xN ⊆x- for every x- ∈ S.
Publisher
Sociedade Paranaense de Matemática
Reference22 articles.
1. Al-Zoubi, K. and Al-Qderat, A., Some properties of graded comultiplication modules, Open Mathematics, 15, 187-192, (2017).
2. Ansari-Toroghy, H. and Farshadifar, F., Graded comultiplication modules, Chiang Mai J. Sci., 38 (3), 311-320, (2011).
3. Bell, J. and Rogalski, D., Z−graded simple ring, American Mathematical Society, 386 (6), 4461-4496, (2016).
4. Ceken, S. and Alkan, M., On graded secondary coprimary modules and graded secondary representations, Bulletin of the Malaysian Mathematical Sciences Society, 38 (4), 1317-1330, (2015).
5. Dell’Ambrogio, I. and Stevenson, G., On the derived category of a graded commutative Noetherian ring, Journal of Algebra, 373, 356-376, (2013).