Affiliation:
1. Sidi Mohamed Ben Abdellah University
Abstract
Our goal in this study is to prove the existence of solutions for the following nonlinear anisotropic degenerate elliptic problem:- \partial_{x_i} a_i(x,u,\nabla u)+ \sum_{i=1}^NH_i(x,u,\nabla u)= f- \partial_{x_i} g_i \quad \mbox{in} \ \ \Omega,where for $i=1,...,N$ $ a_i(x,u,\nabla u)$ is allowed to degenerate with respect to the unknown u, and $H_i(x,u,\nabla u)$ is a nonlinear term without a sign condition. Under suitable conditions on $a_i$ and $H_i$, we prove the existence of weak solutions.
Publisher
Sociedade Paranaense de Matematica
Reference25 articles.
1. Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).
2. C. M. Dafermos, C. M., An abstract Volterra equation with application to linear viscoelasticity. J. Differential Equations 7, 554-589, (1970).
3. A. Alvino, M.F. Betta, and A. Mercaldo, Comparison principle for some classes of nonlinear elliptic equations. J. Differential Equations 249, 3279-3290, (2010).
4. S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results. Differential Integral Equations 21, 401-419, (2008).
5. Bendahmane M, Langlais M, Saad M, On some anisotropic reaction-diffusion systems with L1-data modeling the propagation of an epidemic disease. Nonlinear Analysis, 54(4):617-636, (2003).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献