Affiliation:
1. University of Gjakova ”Fehmi Agani”
2. University of Prishtina
Abstract
$T\in L(H_{1}\oplus H_{2})$ is said to be an algebraic extension of a $\mathcal{A}^{*}_{n}$ operator if $$ T = \begin{pmatrix} T_{1} & T_{2} \\O & T_{3} \end{pmatrix} $$ is an operator matrix on $H_{1}\oplus H_{2}$, where $T_{1}$ is a $\mathcal{A}^{*}_{n}$ operator and $T_{3}$ is a algebraic.In this paper, we study basic and spectral properties of an algebraic extension of a $\mathcal{A}^{*}_{n}$ operator. We show that every algebraic extension of a $\mathcal{A}^{*}_{n}$ operator has SVEP, is polaroid and satisfies Weyl's theorem.
Publisher
Sociedade Paranaense de Matematica
Reference12 articles.
1. Aiena, P., Semi-Fredholm operators, perturbations theory and localized SVEP, Merida, Venezuela (2007).
2. Aiena, P.; Aponte, E.; Bazan, E., Weyl type theorems for left and right polaroid operators, Integral Equations Oper. Theory 66, 1-20, (2010). https://doi.org/10.1007/s00020-009-1738-2
3. Aiena, P.; Pe˜na, P., Variations on Weyls theorem, J. Math. Anal. Appl. 324 (1), 566-579, (2006). https://doi.org/10.1016/j.jmaa.2005.11.027
4. Aiena, P., Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, (2004).
5. Cao, X. H., Analytically Class A operators and Weyl's theorem, J. Math. Anal. Appl. 320, 795-803, (2006). https://doi.org/10.1016/j.jmaa.2005.07.056