Abstract
In this paper, we introduce a concept of statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is statistically $p$-quasi-Cauchy if $\lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called statistically $p$-ward continuous on a subset $A$ of the set of real umbers $\mathbb{R}$ if it preserves statistically $p$-quasi-Cauchy sequences, i.e. the sequence $f(\textbf{x})=(f(\alpha_{n}))$ is statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves statistically $p$-quasi-Cauchy sequences of points in $A$.
Publisher
Sociedade Paranaense de Matematica
Reference62 articles.
1. An approach to soft functions;Aras;J Math Anal,2017
2. 2. H.Bor, On Generalized Absolute Cesaro Summability, An.Stiint.Univ.Al.I.Cuza Iasi.Mat. (N.S.)57, 2, 323-328,(2011). DOI: 10.2478/v10157-011-0029-9
3. Braha, H. Cakalli, A new type continuity for real functions;Naim;J Math Anal,2016
4. andJ.Coleman, Quasi-Cauchy Sequences;Burton;Am Math Mon,2010
5. A variation on arithmetic continuity;Cakalli;Bol Soc Paran Mat,2017