Affiliation:
1. Sidi Mohamed Ben Abdellah University
Abstract
An elliptic curve over a ring $\mathcal{R}$ is a curve in the projective plane $\mathbb{P}^{2}(\mathcal{R})$ given by a specific equation of the form $f(X, Y, Z)=0$ named the Weierstrass equation, where $f(X, Y, Z)=Y^2Z+a_1XYZ+a_3YZ^2-X^3-a_2X^2Z-a_4XZ^2-a_6Z^3$ with coefficients $a_1, a_2, a_3, a_4, a_6$ in $\mathcal{R}$ and with an invertible discriminant in the ring $\mathcal{R}.$ %(see \cite[Chapter III, Section 1]{sil1}). In this paper, we consider an elliptic curve over a finite ring of characteristic 3 given by the Weierstrass equation: $Y^2Z=X^3+aX^2Z+bZ^3$ where $a$ and $b$ are in the quotient ring $\mathcal{R}:=\mathbb{F}_{3^d}[X]/(X^2-X),$ where $d$ is a positive integer and $\mathbb{F}_{3^d}[X]$ is the polynomial ring with coefficients in the finite field $\mathbb{F}_{3^d}$ and such that $-a^3b$ is invertible in $\mathcal{R}$.
Publisher
Sociedade Paranaense de Matematica
Reference8 articles.
1. W. Bosma, H.W. Lenstra, Complete System of Two Addition Laws for Elliptic curve, Journal of Number Theory (1995). https://doi.org/10.1006/jnth.1995.1088
2. A. Chillali, Cryptography over elliptic curve of the ring Fq[ε] , ε 4 = 0, World Academy of Science, Engineering and Technology, (2011).
3. M. H. Hassib, A. Chillali, The ∼π homomorphism of Ea,b(F3d [ε]), AIP publishing, vol.1557, (2013) 12-14.
4. M. H. Hassib, A. Chillali, M. Abdou Elomary, Elliptic curve over a chain ring of characteristic 3, (International Workshop of Algebra and Applications, 2014, FST Fez, Morocco), Journal of Taibah University for Science (2015). https://doi.org/10.1016/j.jtusci.2015.02.001
5. M. Zeriouh, A. Chillali, A. Boua, Cryptography based on the matrices, Boletim da Sociedade Paranaense de Matematica, Vol 37, No 3 (2019) 75-83. https://doi.org/10.5269/bspm.v37i3.34542