Affiliation:
1. Sidi Mohamed Ben Abdellah University
Abstract
In this work we introduce the notion of P-Ikeda-Nakayama rings (\P-IN-rings") which is in some way a generalization of the notion of IkedaNakayama rings (\IN-rings"). Then, we study the transfer of this property to trivial ring extension, localization, homomorphic image and to the direct product.
Publisher
Sociedade Paranaense de Matematica
Reference13 articles.
1. J. Abuihlail, M. Jarrar, and S. Kabbaj, Commutative rings in which every finitely generated ideal is quasi-projective, J. Pure Appl. Algebra 215 (2011), 2504-2511. https://doi.org/10.1016/j.jpaa.2011.02.008
2. D. D. Anderson, M. Winders, Idealization of a module, Rocky Mountain J. Math, 1(1)(2009), 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
3. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
4. C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prufer conditions, J. Pure Appl. Algebra 214 (2010), 53-60. https://doi.org/10.1016/j.jpaa.2009.04.011
5. G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal ? Comm. Algebra 43 (2015), 2690-2702. https://doi.org/10.1080/00927872.2014.882931