Abstract
This paper is concerned with the existence of weak solutions of $p(x)$-Kirchhoff type problems with no-flux boundary condition. Our technical approach is based on topological degre methods of Berkovits.
Publisher
Sociedade Paranaense de Matematica
Reference22 articles.
1. C. Allalou, M. El Ouaarabi, S. Melliani ” Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data. J Elliptic Parabol Equ (2022).
2. Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations. Electronic Journal of Differential Equations (EJDE), 2001, vol. 2001, p. Paper No. 71, 19.
3. J .Berkovits, on the degree theory for nonlineair mapping of monotone type, Vol 58. Helsinki: Guomalaimen Tiedeakatemia, 1986.
4. M. M. Boureanu and D. Udrea, Existence and multiplicity results for elliptic problems with p(x)-growth conditions, Nonlinear Anal. Real World Appl., 14(2013), 1829-1844.
5. J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings. Journal of Differential Equations, 2007, vol. 234, no 1, p. 289-310.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献