Abstract
This paper presents an analytical and numerical study of a new integro-differential Fredholm-Chandrasekhar equation of the second type. We suggest the conditions that ensure the existence and uniqueness of the nonlinear problem's solution. Then, we create a numerical technique based on the Nystr\"{o}m's method. The numerical application illustrates the efficiency of the proposed process.
Funder
Direction Générale de la Recherche Scientifique et du Développement Technologique
Publisher
Sociedade Paranaense de Matematica
Reference15 articles.
1. M. Z. Aissaoui, M. C. Bounaya and H. Guebbai Analysis of a Nonlinear Volterra-Fredholm Integro-Differential Equation, Quaestiones Mathematicae, (2021) DOI: 10.2989/16073606.2020.1858991
2. K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Springer-Verlag, New York 2001.
3. M. C Bounaya, S. Lemita, M. Ghiat and M.Z Aissaoui, On a nonlinear integro-differential equation of Fredholm type, Computing Science and Mathematics, 13 (2021) 194–205.
4. J. Caballero, A. B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative, Electron, J. Diff. Equat 57 (2006) 1–11.
5. S. Chandrasekhar, Radiative Transfar, Dover, New york 1960.