Abstract
Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \simeq R/I_1 \bigoplus R/I_2 \bigoplus ... \bigoplus R/I_n$ and $I_1 \subseteq I_2 \subseteq ... \subseteq I_n$. In this paper, we use some new results about $\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.
Publisher
Sociedade Paranaense de Matematica
Reference14 articles.
1. El-Bast, Z. A., Smith, P. F., Multiplication modules. Comm. Algebra 16,755-779, (1988)
2. Azizi, A., Shiraz, Weak multiplication modules. Czechoslovak mathematical journal 53(128), 529-534, (2003)
3. Lang, S., Algebra. 3rd Edition, Addison-Wesley, (1993).
4. Kaplansky, I., Elementary Divisors and Modules. Tran. Ame. Math. Soc. 66, 153-169, (1949).
5. M. E. Charkani, M. E., Akharraz, I., Fitting ideals and cyclic decomposition of finitely generated modules. Arabian Journal for Science and Engineering 25(2), 151-156, (2000).