Author:
Chulu Francis,Phiri Jackson,Nyirenda Mayumbo,Kabemba Monica M.,Nkunika Phillip,Chiwamba Simon
Abstract
To combat the fall Army worm (FAW-Spodoptera frugiperda) pest which has a negative impact on world food security, there is need to come up with methods that can be used alongside conventional methods of spraying. Therefore this paper proposes a machine learning based system for automatic identification and monitoring of Fall Army worm Moths. The system will aim to address challenges that are associated with trap based FAW monitoring such as manual data collection as the system will automate the data collection process. The study will aim to automate the data collection process by developing a machine learning algorithm for FAW moth identification. The study will develop web and mobile applications integrated with Geographic information system (GIS) technology in addition to trap automation. The tools developed in this study will aim to improve the accuracy and efficiency of FAW monitoring by reducing the aspect of human intervention. At the time of writing this paper, only the web based tool prototype has been developed, therefore this paper mostly focuses on the design of the web based tool. The paper also provides a brief quantification of the chosen machine learning technique to be used in the study.
Publisher
ICT Association of Zambia
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献