Developing an automatic identification and early warning and monitoring web based system of fall army worm based on machine learning in developing countries

Author:

Chulu Francis,Phiri Jackson,Nyirenda Mayumbo,Kabemba Monica M.,Nkunika Phillip,Chiwamba Simon

Abstract

To combat the fall Army worm (FAW-Spodoptera frugiperda) pest which has a negative impact on world food security, there is need to come up with methods that can be used alongside conventional methods of spraying. Therefore this paper proposes a machine learning based system for automatic identification and monitoring of Fall Army worm Moths. The system will aim to address challenges that are associated with trap based FAW monitoring such as manual data collection as the system will automate the data collection process. The study will aim to automate the data collection process by developing a machine learning algorithm for FAW moth identification. The study will develop web and mobile applications integrated with Geographic information system (GIS) technology in addition to trap automation. The tools developed in this study will aim to improve the accuracy and efficiency of FAW monitoring by reducing the aspect of human intervention. At the time of writing this paper, only the web based tool prototype has been developed, therefore this paper mostly focuses on the design of the web based tool. The paper also provides a brief quantification of the chosen machine learning technique to be used in the study.

Publisher

ICT Association of Zambia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3