Machine Learning Algorithms for automated Image Capture and Identification of Fall Armyworm (FAW) Moths

Author:

Chiwamba Simon Hawatichke,Phiri Jackson,Nkunika Philip O. Y.,Nyirenda Mayumbo,Kabemba Monica M.,Sohati Philemon H.

Abstract

Automated entomology is one of the field that has received a fair attention from the computer scientists and its support disciplines. This can further be confirmed by the recent attention that the Fall Armyworm (FAW) (Spodoptera frugiperda) has received in Africa particularly the Southern African Development Community (SADC). As the FAW is known for its devastating effects, stakeholders such as the Food and Agriculture Organization (FAO), SADC and University of Zambia (UNZA) have agreed to develop robust early monitoring and warning system. To supplement the stakeholders’ efforts, we choose a branch of artificial intelligence that employs deep neural network architectures known as Google TensorFlow. It is an advanced state-of-the-art machine learning technique that can be used to identify the FAW moths. In this paper, we use Google TensorFlow, an open source deep learning software library for defining, training and deploying machine learning models. We use the transfer learning technique to retrain the Inception v3 model in TensorFlow on the insect dataset, which reduces the training time and improve the accuracy of FAW moth identification. Our retrained model achieves a train accuracy of 57 – 60 %, cross entropy of 65 – 70% and validation accuracy of 

Publisher

ICT Association of Zambia

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3